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a b s t r a c t

In this paper we address a key issue in scenario classification, where classifying concepts
show a natural overlapping. In fact, overlapping needs to be evaluated whenever classes
are not crisp, in order to be able to check if a certain classification structure fits reality and
still can be useful for our declared decision making purposes. In this paper we address an
object recognition problem, where the best classification with respect to background is the
one with less overlapping between the class object and the class background. In particular,
in this paper we present the basic properties that must be fulfilled by overlap functions,
associated to the degree of overlapping between two classes. In order to define these
overlap functions we take as reference properties like migrativity, homogeneity of order 1
and homogeneity of order 2. Hence we define overlap functions, proposing a construction
method and analyzing the conditions ensuring that t-norms are overlap functions. In
addition, we present a characterization of migrative and strict overlap functions by means
of automorphisms.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

In many fields, a common problem is to assign a given element to one of the several classes of objects. If the separation
between the classes is not clear, the expert may not be sure about how to assign elements into a specific class. Perhaps
these classes are fuzzy in nature and the expert realizes that elements are simply in between several classes (see, e.g., [1]).
But perhaps it is the case that the border, being clear in reality, is simply not clear enough in our picture. In any of these
situations the concept of overlap arises (see [2–7,26–28]).
In image processing, for instance, the identification of the objects in a given image is a very important problem. A widely

used technique to handle this problem is thresholding. Focusing on the case of an imagewith a single object on a background,
thresholding consists of determining an intensity threshold such that pixels whose intensity is greater than the threshold
are assigned to the object (or background), and pixels whose intensity is smaller than the threshold are assigned to the
background (object). Usually, these kind of problems aremanaged bymeans of functions that somehow represent the object
and the background. Several methods can be considered to build such functions, from probabilistic techniques to fuzzy
methods, including ad hoc constructions made by an expert.
In any case, twomembership functions like the ones depicted in Fig. 1 will be always needed in this kind of problem: two

functions µB and µO that, in an expert’s opinion, will represent the background and the object, respectively, on the scale of
L levels of gray. And there will exist two intensity values, denoted by qi and qj, such that for intensities lower than qi the
expert is sure that the pixels do not belong to the object, whereas for intensities greater than qj the expert is sure that they
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Fig. 1. Background and object representation.

do not belong to the background. However, for any intensity between qi and qj the expert is not positively sure of whether it
belongs to one or the other. Moreover, in this case there exists an intensity qk for which the lack of knowledge is maximum.
Overlap functions provide a mathematical model for this kind of situations.
The degree of overlap between those two functions (for object and background) can be interpreted as the representation

of the lack of knowledge of the expert in determining if the pixel in question belongs to the background or to the object (see
Fig. 1). Our overlap functions pursue to measure this overlapping degree.
Nevertheless, for a given image many different representations similar to Fig. 1 can be depicted, meaning that many

pairs of mappings representing the object on one side and the background on the other side are possible. Moreover, there
are different algorithms in image processing which assign a threshold to each pair of functions. Many different thresholds
can be defined for a given image, and it is therefore necessary to find a method to determine which one is the best. A first
approach to a possible algorithm is the following:

(1) Calculate the overlap degree for each pair of functions;
(2) Take the threshold corresponding to the pair of functions for which the overlap degree is smallest.

Hence, we can properlymeasure overlapping, with this kind of algorithmwe can find the threshold ensuring the smallest
intersection between the mappings that represent the background and the object, which can be understood as the best
threshold in the sense that it is the procedure best distinguishing between the object and the background.
So the concept of overlap function should become a key mathematical tool for the modelization on overlapping indices,

and a first mathematical analysis should immediately allow to:

• determine a distribution of the pixels of an image between the background and the object;
• build an algorithm to choose the best threshold for an image from a set of different possible thresholds.

From a mathematical point of view, overlap functions can be seen just as a particular instance of bivariate, continuous
aggregation functions, that is, increasing functions defined over the unit square and with appropriate boundary conditions
(see Definition 2 for more details). It is therefore worth to consider the possible relationships between overlap functions
and other well-known examples of aggregation functions, as t-norms, copulas, semicopulas or quasi-copulas. Observe that
the requirement of continuity prevents an overlap function from being a uninorm (there is no uninorm being continuous on
the whole unit square). Notice also that although we will demand to our overlap functions to be defined in the unit square,
this is not an essential requirement, and other domains can also be considered.
Moreover, it is clear that the properties we can require to define overlap functions will not be exhaustive at all. On

the contrary, some particular assumptions may be necessary to deal with specific applications. In particular, we consider
here several analytical properties (migrativity, homogeneity, Lipschitzianity) that seem to be quite natural in the image
processing setting.
The structure of this paper is the following. We start by recalling some basic concepts in Section 2. In Section 3 we

define overlap functions and study their first properties. In Section 4 we study under which conditions we can assure that
the different aggregation functions presented in Section 2 can also be overlap functions. Section 5 is devoted to consider
overlap functions which are migrative, homogeneous or Lipschitz. We end by presenting some conclusions and future lines
of work.

2. Preliminaries

For the sake of completeness, in this section we recall some well-known concepts that will be useful in subsequent
sections. We start with the concept of automorphism of the unit interval.
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Definition 1. An automorphism of the unit interval is any continuous and strictly increasing function ϕ : [0, 1] → [0, 1]
such that ϕ(0) = 0 and ϕ(1) = 1.

2.1. Aggregation functions

Concerning aggregation functions, we will follow the approach and definitions given in [8–11] (but see also [12,13].)

Definition 2. An aggregation function of dimension n (n-ary aggregation function) is an increasing mappingM : [0, 1]n →
[0, 1] such thatM(0, . . . , 0) = 0 andM(1, . . . , 1) = 1.

Definition 3. LetM : [0, 1]n → [0, 1] be an n-ary aggregation function.
(i) M is said to have an annihilator a ∈ [0, 1], ifM(x1, . . . , xn) = awhenever a ∈ {x1, . . . , xn}.
(ii) M is said to be strictly increasing if it is strictly increasing as a real function of n-variables on [0, 1]n if M has no
annihilator; and on domain ([0, 1] \ {a})n ifM has an annihilator a.

(iii) M is said to have divisors of zero if there exists x1, . . . , xn ∈]0, 1] such thatM(x1, . . . , xn) = 0.
(iv) M is said to be idempotent ifM(x, . . . , x) = x for any x ∈ [0, 1].

For the particular case of bivariate aggregation functions we remind the following definitions.

Definition 4. LetM be a bivariate aggregation function.
(i) M is said to be symmetric ifM(x, y) = M(y, x) for any x, y ∈ [0, 1].
(ii) M is said to be associative ifM(M(x, y), z) = M(x,M(y, z)) for any x, y, z ∈ [0, 1].

2.2. t-norms and related concepts

We recall now the concept of t-norm, which plays a key role, for instance, to model conjunctions in fuzzy logics or
intersections in fuzzy set theory.

Definition 5. A triangular norm (t-norm for short) is an associative, symmetric bivariate aggregation function T : [0, 1]2 →
[0, 1] such that T (1, x) = x for all x ∈ [0, 1]. A strictly increasing continuous t-norm T is called a strict t-norm.

A particular type of continuous t-norms are Archimedean t-norms (see, e.g., [14]).

Definition 6. A continuous t-norm T is said to be Archimedean if T (x, x) < x for all x ∈]0, 1[.

It is worth to remark that this is not the usual definition of Archimedean t-norm that can be found in the literature.
Nevertheless, both definitions are equivalent when dealing with continuous t-norms ([14]). Any strict t-norm (i.e., any
continuous and strictly increasing t-norm) is necessarily Archimedean.
The following result shows that any strict t-norm is just the image by an automorphism of the product t-norm TP(x, y) =

xy (see [15,14]).

Theorem 1. A t-norm T is strict if and only if there exists an automorphism ϕ of the unit interval such that

T (x, y) = ϕ−1(ϕ(x)ϕ(y)), x, y ∈ [0, 1].

In order to classify continuous t-norms, we need to introduce the concept of an ordinal sum as follows.

Definition 7. Suppose that {[am, bm]} is a countable family of non-overlapping, closed, non-trivial, proper subintervals of
[0, 1], To each [am, bm] in the family associate a t-norm Tm. The ordinal sum of the family {([am, bm], Tm)} is the mapping
T : [0, 1]2 → [0, 1] given by

T (x, y) =

am + (bm − am)Tm
(
x− am
bm − am

,
y− am
bm − am

)
if (x, y) ∈ [am, bm]2

min(x, y) otherwise

Each Tm is called a summand.

Ordinal sums allow the following classification result [16].

Theorem 2. Assume that T is a continuous t-norm. Then, one of the following three cases is valid for T :
1. T (x, y) = min(x, y);
2. T is Archimedean;
3. there exists a family {([am, bm], Tm)} such that T is the ordinal sum of this family and each Tm is a continuous Archimedean
t-norm.

For a more general introduction to t-norms and their properties we refer to [17,6,16,14,15].
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2.3. Migrativity, homogeneity and Lipschitzianity

The concept of α-migrativity was introduced by Durante et al. in [18] for a class of bivariate operations having a property
previously presented by Mesiar and Novak in [[19], Problem 1.8(b)], as Fodor and Rudas acknowledge in [20].

Definition 8. Let α ∈ [0, 1]. A bivariate operation G : [0, 1]2 → [0, 1] is said to be α-migrative if we have

G(αx, y) = G(x, αy) for all x, y ∈ [0, 1].

Observe that any mapping G is 1-migrative, whereas 0-migrativity means that
G(x, 0) = G(0, y) = G(0, 0)

for any x, y ∈ [0, 1]. Also notice that in Definition 8 migrativity refers to a fixed, predetermined α. In [21] the concept of
α-migrativity was generalized as follows.

Definition 9. A function G : [0, 1]2 → [0, 1] is calledmigrative if and only if

G(αx, y) = G(x, αy), for all x, y ∈ [0, 1]

and every α ∈ [0, 1].

In [21], an in-depth study of the migrativity property is carried out, even allowing α to take values greater than 1.

Lemma 1. A mapping G : [0, 1]2 → [0, 1] is migrative if and only if G(x, y) = G(1, xy), for all x, y ∈ [0, 1].

Lemma 2. A mapping G : [0, 1]2 → [0, 1] is migrative if and only if there exists g : [0, 1] → [0, 1] such that G(x, y) = g(xy),
for all x, y ∈ [0, 1].

We are also going to consider two other analytical properties that can be of interest in applications of overlap functions.
The first one is that of homogeneity of order k > 0, whereas the second is a sort of stronger continuity known as
Lipschitzianity.

Definition 10. Let G : [0, 1]2 → [0, 1] be a mapping and k ∈]0,∞[. G is homogeneous of order k if for any α ∈ [0,∞[ and
for any x, y ∈ [0, 1] such that αkx, αky ∈ [0, 1] the identity

G(αx, αy) = αkG(x, y)

holds.

Definition 11. LetG : [0, 1]2 → [0, 1] be amapping and k ∈]0,∞[.G is k-Lipschitz if for any x, y, z, t ∈ [0, 1] the inequality

|G(x, y)− G(z, t)| ≤ k(|x− z| + |y− t|)

holds.

2.4. Copulas, semicopulas and quasi-copulas

In Statistics, a copula is a way of formulating a multivariate distribution in such a way that various general types
of dependence can be represented. By weakening the conditions required to a copula, we recover the concept of both
semicopulas and quasi-copulas, that we present in the following.

Definition 12. A mapping S : [0, 1]2 → [0, 1] is called a semicopula if it is nondecreasing in each coordinate and 1 is its
neutral element, i.e., S(x, 1) = S(1, x) = x for all x ∈ [0, 1].

Definition 13. A quasi-copula is a semicopula Q which is also a 1-Lipschitz function.

Definition 14. A copula is a semicopula C which is 2-increasing, i.e.,

S(x, y)+ S(x′, y′)− S(x′, y)− S(x, y′) ≥ 0 for all 0 ≤ x ≤ x′ ≤ 1, 0 ≤ y ≤ y′ ≤ 1.

Observe that, as stated previously, each copula is a quasi-copula. More generally, all copulas, semicopulas and quasi-
copulas are aggregation functions.

3. Definition of overlap function and basic properties

We can now propose the following definition of overlap function as a particular type of bivariate aggregation function.

Definition 15. A mapping GS : [0, 1]2 → [0, 1] is an overlap function if it satisfies the following conditions:
(GS1). GS is symmetric.
(GS2). GS(x, y) = 0 if and only if xy = 0.
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(GS3). GS(x, y) = 1 if and only if xy = 1.
(GS4). GS is nondecreasing.
(GS5). GS is continuous.

There are many possible examples of overlap functions. For instance, GS(x, y) = min(x, y) or GS(x, y) = xy. If we denote
by G the set of all overlap functions, the following result is immediate.

Theorem 3. (G,≤G) with the ordering ≤G defined for G1,G2 ∈ G by

G1≤G G2 if and only if G1(x, y) ≤ G2(x, y)

for all x, y ∈ [0, 1], is a lattice.

It is clear that the lattice (G,≤G) is not complete (no top neither bottom elements, for example). On the other hand, it is
closed with respect to appropriate aggregation functions, as shown next.

Theorem 4. Let M : [0, 1] × [0, 1] → [0, 1] be a mapping. For G1,G2 ∈ G, define the mappingM(G1,G2) : [0, 1] × [0, 1] →
[0, 1] as

M(G1,G2)(x, y) = M(G1(x, y),G2(x, y)) for all x, y ∈ [0, 1].

Then,M(G1,G2) ∈ G for any G1,G2 ∈ G if and only if there is a continuous aggregation function M∗ : [0, 1] × [0, 1] → [0, 1]
with no zero divisors and such that also its dual (M∗)d (that is, the mapping (M∗)d(x, y) = 1 − M∗(1 − x, 1 − y)) has no zero
divisors (i.e., if M∗(x, y) = 1 then necessarily either x = 1 or y = 1) so that M|E = M∗|E , where E = ]0, 1[2 ∪ {(0, 0), (1, 1)}.

Proof. The sufficiency is obvious. To see the necessity, observe first that for any G1, G2 ∈ G and for any (x, y) ∈ [0, 1]2,
G1(x, y) = 0 if an only if G2(x, y) = 0 (if and only if min(x, y) = 0), and thus necessarily M(0, 0) = 0. Similarly, we can
show that M(1, 1) = 1 (observe that if GS(x, y) = 1 for some GS ∈ G, then necessarily x = y = 1, i.e., for any HS ∈ G we
have H(x, y) = 1). Moreover, the values ofM on [0, 1]2 \ {]0, 1]2 ∪ (0, 0)} are never applied when aggregating two overlap
functions and thus they are irrelevant.
Nowwe show the nondecreasingness ofM on ]0, 1[2. Suppose on the contrary that there exists x, y, z, t ∈]0, 1[ such that

x ≤ z, y ≤ t but M(x, y) > M(z, t). Then there exist G1,G2 ∈ G, and a, b, c, d ∈]0, 1[, a ≤ b, c ≤ d, so that G1(a, b) = x,
G2(a, b) = y, G1(c, d) = z and G2(c, d) = t . Then the property (GS4) ofM(G1,G2) contradicts the inequality

M(x, y) = M(G1(a, b),G2(a, b)) =M(G1,G2)(a, b) > M(G1,G2)(c, d)
= M(G1(c, d),G2(c, d)) = M(z, t).

As for any x, y ∈]0, 1[, M(x, y) ∈]0, 1[, nondecreasingness in E follows. Similarly, the continuity of M on E can be shown,
and we can take asM∗ the unique continuous aggregation function coinciding withM on E. �

Remark. Hence, we shall assume from now on that M is continuous (remind also the arguments in [11] claiming that
standard continuity may be too weak for some practical applications.) Notice also that, under this assumption,

(1) The lattice G is closed under the product operator.
(1) The lattice G is not closed under the Łukasiewicz t-norm TL(x, y) = max(x+ y− 1, 0) For instance,

M(x, y) = TL(min(x, y),min(x, y))

has zero divisors (take x = 1/4 and y = 1), thus clearly is not an overlap function.

As an important particular case we have the following result.

Corollary 1. Let G1, . . . ,Gm be overlap functions and w1, . . . , wm be nonnegative weights with
∑
wi = 1. Then the convex

sum G =
∑
wiGi is also an overlap function.

In the following proposition we present some general relations between the properties required to an overlap function
and some other analytical properties to be considered later.

Proposition 1. Let G : [0, 1]2 → [0, 1] be a bivariate mapping.

(i) If G satisfies the property (GS2), then it does not satisfy the self-duality property, that is, the identity

G(x, y) = 1− G(1− x, 1− y)

does not hold.
(ii) If G is migrative, then G satisfies (GS1).
(iii) If G is migrative and GS(0, 0) = 0, then G satisfies (GS2).
(iv) If G is homogeneous of order k > 0, then G(0, 0) = 0.
(v) If G is homogeneous of order 1 and G(1, 1) = 1, then G is idempotent.
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(vi) If G is migrative and idempotent, then G is also homogeneous of order 1.
(vii) If G is migrative and it has 1 as neutral element (i.e., G(x, 1) = G(1, x) = x for all x ∈ [0, 1]), then it is also homogeneous

of order 2.

Moreover, none of the converse implications is true.

Proof. (i) If GS satisfies (GS2) and the self-duality property, for all x, y ∈ [0, 1] we have GS(x, y) = 1 − GS(1 − x, 1 − y).
In particular, if x = 0 and y = 1, then 0 = GS(0, 1) = 1 − GS(1, 0) = 1 which is impossible. So GS does not satisfy the
self-duality property.
(ii) By Lemma 1 we have G(x, y) = G(1, xy) = G(1, yx) = G(y, x).
(iii) (Necessity) G(x, y) = 0 = G(0, 0) = G(0, y) = G(x, 0) for all x, y ∈ [0, 1]. (Sufficiency) If xy = 0, let’s suppose that

y = 0; then G(x, 0) = G(x, 0 · 0) = G(0, 0) = 0
(iv) G(0, 0) = G(α · 0, α · 0) = αG(0, 0) for all α ∈ [0, 1[. Therefore (1− α)G(0, 0) = 0, then G(0, 0) = 0.
(v) G(x, x) = G(x · 1, x · 1) = xG(1, 1) = x.
(vi) By Lemma 2 we have that there exists g : [0, 1] → [0, 1] such that G(x, y) = g(xy). Besides G is idempotent,

therefore x = G(x, x) = g(x2); that is, g(x) =
√
x. Therefore G(αx, αy) = α

√
xy = αG(x, y).

(vii) By Lemma 1 we have that G(x, y) = G(1, xy) = xy. Therefore G(αx, αy) = α2xy = α2G(x, y). �

3.1. Characterization of overlap functions

Next result represents an alternative characterization of overlap functions.

Theorem 5. The mapping GS : [0, 1]2 → [0, 1] is an overlap function if and only if

GS(x, y) =
f (x, y)

f (x, y)+ h(x, y)

for some f , h : [0, 1]2 → [0, 1] such that

(1) f and h are symmetric;
(2) f is nondecreasing and h is nonincreasing;
(3) f (x, y) = 0 if and only if xy = 0;
(4) h(x, y) = 0 if and only if xy = 1;
(5) f and h are continuous functions;

Proof. Please note that f (x, y) + h(x, y) 6= 0, for all (x, y) ∈ [0, 1]2. Then necessity is immediate just by taking f (x, y) =
GS(x, y) and h(x, y) = 1− GS(x, y).
Let us then prove sufficiency: since (GS1), (GS2), (GS3) and (GS5) are direct, let us simply check (GS4). If x1 ≤ x2 we have

f (x1, y) ≤ f (x2, y) and h(x2, y) ≤ h(x1, y). Therefore,

f (x1, y)h(x2, y) ≤ f (x2, y)h(x1, y)

in such a way that

f (x1, y)f (x2, y)+ f (x1, y)h(x2, y) ≤ f (x1, y)f (x2, y)+ f (x2, y)h(x1, y).

Hence,

GS(x1, y) =
f (x1, y)

f (x1, y)+ h(x1, y)
≤

f (x2, y)
f (x2, y)+ h(x2, y)

= GS(x2, y). �

Example 1. Take f (x, y) =
√
xy and h(x, y) = max(1− x, 1− y), then we have that by the construction given in Theorem 5

we get an overlap function

GS(x, y) =
√
xy

√
xy+max(1− x, 1− y)

.

Corollary 2. Under the conditions of Theorem 5 the following items hold:

(i) GS(x, x) = x for some x ∈ (0, 1) if and only if

f (x, x) =
x
1− x

h(x, x).

(ii) GS is migrative if and only if f (αx, y)h(x, αy) = f (x, αy)h(αx, y) for all α, x, y ∈ [0, 1].
(iii) If f and h are migrative, then GS is migrative.
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(iv) The function h cannot be homogeneous of any order.
(v) If f is homogeneous of order k, then GS is homogeneous of the same order k if and only if f + h is constant, i.e., GS(x, y) =

f (x,y)
h(0,0) .

Proof. Items (i), (ii) and (iii) are direct. About (iv), if h is homogeneous of order one, for instance, then, taking, x 6= 1 we
have h(x, x) = xh(1, 1) = x · 0 = 0, so the condition h(x, y) = 0 if and only if xy = 1 is not fulfilled.
(v) (Necessity) By hypothesis GS(αx, αy) = αnGS(x, y) and f (αx, αy) = αnf (x, y). Therefore

f (αx, αy)
f (αx, αy)+ h(αx, αy)

=
αnf (x, y)

αnf (x, y)+ h(αx, αy)
=

αnf (x, y)
f (x, y)+ h(x, y)

.

If αnf (x, y) = 0, it is clear. In other case:

f (x, y)+ h(x, y) = αnf (x, y)+ h(αx, αy)

therefore

f (x, y) =
h(αx, αy)− h(x, y)

1− αn

for all α ∈ [0, 1[. In particular α = 0, then f (x, y)+ h(x, y) = h(0, 0) for all x, y ∈ [0, 1], therefore GS(x, y) =
f (x,y)
h(0,0) .

(Sufficiency) Direct. �

Theorem 5 allows the definition of interesting families of overlap functions.

Corollary 3. Let f and h be two functions in the setting of the previous theorem. Then, for k1, k2 ∈]0,∞[, the mappings

Gk1,k2S (x, y) =
f k1(x, y)

f k1(x, y)+ hk2(x, y)
define a parametric family of overlap functions.

Corollary 4. In the same setting of Theorem 5, let us assume that GS can be expressed in two different ways:

GS(x, y) =
f1(x, y)

f1(x, y)+ h1(x, y)
=

f2(x, y)
f2(x, y)+ h2(x, y)

for any x, y ∈ [0, 1] and let M be a bivariate continuous aggregation function that is homogeneous of order one. Then, if we define
f (x, y) = M(f1(x, y), f2(x, y)) and h(x, y) = M(h1(x, y), h2(x, y)) it also holds that

GS(x, y) =
f (x, y)

f (x, y)+ h(x, y)
.

Proof. First observe that fi = hi GS1−GS for i = 1, 2. By the homogeneity condition on M , also f = h
GS
1−GS

and the result
follows. �

Example 2. If f (x, y) =
√
xy and h(x, y) = 1 − xy, then both f and h are migrative, and thus due to Corollary 2(ii), the

function GS constructed by means of Theorem 5 and given by

GS(x, y) =
√
xy

√
xy+ 1− xy

is a migrative overlap function.

Item (v) in Corollary 2 leads us to study overlap functions GS obtained from Theorem 5 taking f and h such that
f (x, y) + h(x, y) = 1 for all x, y ∈ [0, 1] (thus necessarily f (1, 1) = 1, and hence f is a continuous symmetric aggregation
function with annihilator).

4. Specific cases

Among possible candidates for overlap functions, no uninorm can be accepted, since we already know that no uninorm
is continuous in the whole unit square. Moreover, notice that the only possible neutral element for an overlap function GS
is e = 1; that is, if there exists e ∈ [0, 1] such that GS(e, x) = GS(x, e) = x for all x ∈ [0, 1], then e = 1. This follows
from the identity GS(1, e) = 1 (which holds if e is a neutral element for GS) and (GS3) in the definition of overlap functions.
These considerations suggest us to consider the relationship between overlap functions and specific instances of aggregation
functions, such as t-norms, copulas (quasi-copulas, semicopulas), means, etc.

4.1. Specific case: t-norms

As the first result of this section, we show that any associative overlap function is indeed a t-norm.
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Theorem 6. Let GS be and associative overlap function. Then GS is a t-norm.
Proof. We have to show only that 1 is the neutral element of GS . From the continuity of GS and the fact that GS(0, 1) = 0,
GS(1, 1) = 1 it follows that for any x ∈]0, 1[ there exists y ∈]0, 1[ such that x = GS(y, 1). However, then G(x, 1) =
GS(GS(y, 1), 1) = GS(y,GS(1, 1)) = GS(y, 1) = x, and similarly GS(1, x) = x. �

On the other hand, by definition t-norms fulfill (GS1) and (GS4). They also satisfy (GS3), the easy proof being: 1 =
T (x, y) ≤ min(x, y), then x = y = 1. The reciprocal is direct, just taking into account that the neutral element of T is the
one. As for the property (GS2)wemust say that when we work with t-norms, the necessary condition of double implication
(of (GS2)) coincides with the definition of positive t-norm, (please see page 4 in [22]). All these considerations, together with
Theorem 2, allow us to get the following classification theorem.

Theorem 7. If a t-norm T is an overlap function, then T belongs to one of the following three types:
(1) T = TM ;
(2) T is strict;
(3) T is the ordinal sum of the family {([am, bm], Tm)}, with all the Tm continuous Archimedean and such that if for some
m0 am0 = 0, then necessarily Tm0 is a strict t-norm.

Proof. We have assumed by definition that any overlap function satisfies continuity, due to condition (GS5). By hypothesis
T is a t-norm which is also an overlap function, so it is continuous. By the classification of continuous t-norms given in pg.
11 of [16] we know that for a continuous t-norm T there are three possibilities:
1. T = TM ;
2. T is Archimedean;
3. There exists a family {([am, bm], Tm)} such that Tm is the ordinal sum of this family in the sense of [16].

Since by hypothesis T is an overlap function, it satisfies (GS5) and (GS2). If T is Archimedean, we have that T is strict.
On the other hand, suppose now that T is the ordinal sum of the family {([am, bm], Tm)}; that is:

T (x, y) =

am + (bm − am)Tm
(
x− am
bm − am

,
y− am
bm − am

)
if (x, y) ∈ [am, bm]2

min(x, y) otherwise .

We know that for any t-norm the property: if xy = 0, then T (x, y) = 0 holds. Moreover, by hypothesis the previous t-norm
also satisfies the reciprocal, since it is an overlap function. Then, if T (x, y) = 0 there are two possibilities:
(a) (x, y) does not belong to any [am, bm]2, so T (x, y) = min(x, y) for that (x, y).
(b) The point (x, y) belongs to [am, bm]2. As T (x, y) = 0 = am + (bm − am)Tm( x−ambm−am

,
y−am
bm−am

), then am = 0 and bm 6= 0,
since, on the contrary, the considered interval would be [0, 0] and x = y = 0. we know that T fulfills (GS2) and moreover
we also know that if T (x, y) = 0 then Tm( xbm ,

y
bm
) = 0, hence Tm also satisfies (GS2). Therefore we have that the continuous,

Archimedean t-norm Tm associated to the interval [0, bm] also fulfills (GS2), so it is strict. �

Example 3. (1) In the construction of the following overlap function we use item (3) of Theorem 7 taking as t-norm the
product, (which is strict, continuous and Archimedean), for the corresponding interval [0, 0.5].

GS(x, y) =
{
2xy if (x, y) ∈ [0, 0.5]2

min(x, y) otherwise .

(2) In the construction of the following overlap functionwe take the product and the Łukasiewicz t-norms (see pg 84 of [14]).
Nevertheless, in this overlap function we do not consider any interval of the type [0, bm].

GS(x, y) =

0.1+ 2.5(x− 0.1)(y− 0.1) if (x, y) ∈ [0.1, 0.5]
2

0.7+max(x+ y− 1.6, 0) if (x, y) ∈ [0.7, 0.9]2

min(x, y) otherwise .

(3) The following t-norm satisfies all the properties required to overlap functions, except (GS2). This is due to the fact that
in [0, 0.25]2 we consider the Lukasiewicz t-norm which is continuous and Archimedean but not strict.

T (x, y) =
{
max(x+ y− 0.25, 0) if (x, y) ∈ [0, 0.25]2

min(x, y) otherwise .

4.2. Specific cases: Semicopulas, quasi-copulas and copulas

As a first result we have the following.

Proposition 2. Let S be a symmetric semicopula. Then S is an overlap function if and only if S is continuous and has not zero
divisors.
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Proof. Necessity is direct, and for sufficiency it is enough to note that if S(x, y) = 1, monotony implies that x = S(x, 1) = 1
and y = S(1, y) = 1. �

Corollary 5. Let Q be a symmetric quasi-copula without zero divisors. Then Q is also an overlap function.

Proof. Just observe that the Lipschitzianity implies the continuity of Q . �

In general, copulas and quasi-copulas can have zero divisors. This is the case of the copula max(0, x+y−1), which is the
smallest of the copulas with respect to the pointwise ordering. On the other hand, just by assuming appropriate conditions,
we can recover copulas from overlap functions.

Theorem 8. Let GS be an overlap function being homogeneous of order k+1, with k ∈ [0, 1]. Suppose that there exists e ∈ [0, 1]
such that GS(x, e) = GS(e, x) = x for all x ∈ [0, 1], that is, that GS has a neutral element e. Then GS is also a copula.

Proof. As GS is an overlap function homogeneous of order k+1, as stated at the beginning of Section 4, the neutral element
e of GS must be equal to 1. As GS is symmetric and homogeneous, the identity

GS(x, y) = GS

(
max(x, y),

min(x, y)max(x, y)
max(x, y)

)
= max(x, y)kmin(x, y) = min(xky, xyk)

holds. �

Notice that the family (min(xky, xyk)) for k ∈ [0, 1] is the so called Cuadras–Augé family of copulas [23].

5. Migrativity, homogeneity and k-Lipschitzianity of overlap functions

In this section we study under which conditions overlap functions are migrative, homogeneous or k-Lipschitz. Observe
that these three properties can be seen as analytical properties that are stronger than continuity.

5.1. Migrative overlap functions

In this sectionwepresent a characterization theoremofmigrative overlap functions.We also analyze the characterization
of such migrative functions by means of automorphisms. The main consequence of this characterization is that it allows us
to relate migrative overlap functions to strong negations and implication operators.
Clearly some overlap functions are not migrative (for instance, those in Example 1). There are also overlap functions

which are homogeneous of order 1 or 2 but which are not migrative. In the following results we prove that there exist
overlap functions which are migrative and homogeneous of order one or two.

Proposition 3. Let G : [0, 1]2 → [0, 1]. If G is migrative, then

G(x, 1) = G(
√
x,
√
x).

Proof. By Lemmas 1 and 2 there exists a mapping g : [0, 1] → [0, 1] such that G(x, 1) = g(x) = g(
√
x
√
x) =

G(
√
x,
√
x). �

Theorem 9. A mapping GS : [0, 1] → [0, 1] is an overlap function satisfying (GS7) if and only if there exists a nondecreasing
function g : [0, 1] → [0, 1] satisfying g−1(]0, 1[) =]0, 1[ such that

GS(x, y) = g(xy).

Proof (Necessity). Since GS satisfies (GS7), then by Lemma 2 we know that there exists a function g : [0, 1] → [0, 1] such
that GS(x, y) = g(xy) for all x, y ∈ [0, 1]. Besides GS is an overlap function, hence it satisfies (GS4) and (GS5), therefore g is
not decreasing and continuous. Besides GS satisfies (GS2) and (GS3), so:

g(x) = g(x · 1) = GS(x, 1) = 0 if and only if x = 0
g(x) = g(x · 1) = GS(x, 1) = 1 if and only if x = 1.

(Sufficiency) By Lemma 2we have thatGS(x, y) = g(x, y) satisfies (GS7). Taking into account Proposition 1GS satisfies (GS1).
On the other hand:

GS(x, y) = 0 = g(xy) if and only if xy = 0
GS(x, y) = 1 = g(xy) if and only if xy = 1.

Clearly, GS satisfies (GS4) and (GS5) since g is not decreasing and continuous. �
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Example 4.

GS(x, y) =

{xy if xy ≤ 0.6
0.6 if 0.6 ≤ xy ≤ 0.8
2xy− 1 if xy ≥ 0.8.

Proof. Direct. �

5.2. Homogeneous overlap functions

This subsection focusses on homogeneous overlap functions. First of all, from the general characterization result on
homogeneous functions, we have the following result.

Theorem 10. GS is an homogeneous overlap function of order k > 0 if and only if there exists a continuous mapping

ψ : [0, π/2] → [0, 1]

with ψ(0) = 0, ψ(π4 ) = 2
−
k
2 , ψ nondecreasing in [0, π/4] and ψ(θ) = ψ(π2 − θ) for any θ ∈ [0, π/4] such that

GS(x, y) = (x2 + y2)
k
2ψ

(
arctan

(
min(x, y)
max(x, y)

))
for any x, y ∈ [0, 1].

Proof. If GS is homogeneous of order k > 0, then, for any x, y ∈ [0, 1]we have

GS(x, y) = (x2 + y2)
k
2 GS

(
x

(x2 + y2)
1
2
,

y

(x2 + y2)
1
2

)
and hence, as we are reduced to consider values on the unit sphere, the result follows.
The converse is obvious. �

Proposition 4. Let G1 and G2 be overlap functions which are homogeneous of order k1 and k2 respectively. Then
(i) G1G2(x, y) = G1(x, y)G2(x, y) is an overlap function homogeneous of order k1 + k2;

(ii) G
1
k1
1 (x, y) = (G1(x, y))

1
k1 is an overlap function homogeneous of order 1.

Proof. Direct. �

Proposition 5. Let M be a continuous aggregation function homogeneous of order k > 0. If G1 and G2 are two overlap functions
homogeneous of the same order l, thenM(G1,G2) is also an overlap function homogeneous of order kl.

Proof. First of all observe that, ifM(x, y) = 0, asM is increasing and homogeneous of order k

0 = M(x, y) ≥ M(min(x, y),min(x, y)) = min(x, y)kM(1, 1) = min(x, y)k,

so M does not have divisors of zero. In the same way, if M(x, y) = 1, then max(x, y) = 1. So, by Theorem 4,M(G1,G2)
is an overlap function whatever the overlap functions G1 and G2 are. The homogeneity ofM(G1,G2) follows from an easy
calculation. �

Example 5. Let GS : [0, 1]2 → [0, 1] be an overlap function which is homogeneous of order k. Then, the following items
hold:

(i) GS1(x, y) =
xGS (x,y)+yGS (x,y)

2 is an overlap function homogeneous of order k+1 such thatGS1(x, x) = xk+1 for all x ∈ [0, 1].

(ii) GS2(x, y) =
(
xGS (x,y)+yGS (x,y)

2

) 1
k+1

is an idempotent overlap function homogeneous of order 1.

Observe that GS1 and GS2 are not migrative. Obviously GS1(αx, y) 6= GS1(x, αy) for all α ≥ 0. The same can be seen for
GS2 in a similar way.
We can identify homogeneous migrative overlap functions as follows.

Theorem 11. The only migrative homogeneous of order k > 0 function G : [0, 1]2 → [0, 1] such that G(1, 1) = 1 is
G(x, y) = (xy)

k
2 .

Proof. On the one hand, G(αx, αy) = αkG(x, y) = αkg(xy). On the other hand, G(αx, αy) = g(α2xy). Hence, αkg(xy) =
g(α2xy) for all α ≥ 0, x, y ∈ [0, 1], α2xy ∈ [0, 1]. In particular, taking x = y = 1 we have that g(α2) = αk, i.e., g(α) = α

k
2

for all α ∈ [0, 1]. �
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Corollary 6. The only migrative homogeneous of order 1 function GS : [0, 1] → [0, 1] such that GS(1, 1) = 1 is the geometric
mean.

Corollary 7. The only migrative homogeneous of order 2 function G : [0, 1]2 → [0, 1] such that G(1, 1) = 1 is the product.
Proof. On the one hand, G(αx, αy) = α2G(x, y) = α2g(xy). On the other hand, G(αx, αy) = g(α2xy). Hence, α2g(xy) =
g(α2xy) for all α ≥ 0, x, y ∈ [0, 1], α2xy ∈ [0, 1]. In particular, taking x = y = 1 we have that g(α2) = α2, i.e., g(α) = α
for all α ∈ [0, 1]. �

Corollary 8. The only overlap function GS : [0, 1] → [0, 1] that satisfies (GS7) and (GS9) is the product.
Proof. Similar to the proof of Corollary 6. �

5.3. k-Lipschitz overlap functions

First of all we write the definition of k-Lipschitzianity for overlap functions.

Definition 16. Let k ≥ 1. An overlap function GS is k-Lipschitz if for any x, y, z, t ∈ [0, 1] it holds

|GS(x, y)− GS(z, t)| ≤ k(|x− z| + |y− t|). (1)

This is the usual definition of k-Lipschitz functions, and it is valid for any function, allowing any value of k greater than
zero. But, in the case of overlap functions, just by taking x = y = z = 1 and t = 0 the restriction to k ≥ 1 becomes justified.
The set of k-Lipschitz overlap functions with respect to the ordering≤G is bounded, as the next result shows.

Theorem 12. Let k ≥ 1. Then the supremum of the set of k-Lipschitz overlap functions is given by the mapping min(kx, ky, 1),
whereas the infimum is given bymax(kx+ ky− 2k+ 1, 0). That is, for any k-Lipschitz overlap function GS the inequality

max(kx+ ky− 2k+ 1, 0) ≤ GS(x, y) ≤ min(kx, ky, 1)

holds for all x, y ∈ [0, 1].
Proof. Suppose thatGS(x, y) > min(kx, ky, 1) for some x, y ∈ [0, 1]. SinceGS(x, y) ≤ 1, thismeans thatmin(kx, ky, 1) = kx
or min(kx, ky, 1) = ky. In the first case, y = t = 1 and z = 0 in Eq. (1), we arrive at

kx < GS(x, 1) ≤ kx

which is a contradiction. The second case is analogous. On the other hand, by defining for ε > 0 the mappings

max(xy, (1− ε))(min(kx, ky, 1))

we get a sequence of overlap functions which converges uniformly to min(kx, ky, 1) as ε → 0. The proof for the lower
bound is similar.
The mapping max(kx+ ky− 2k+ 1, 0) is never an overlap function. On the contrary, although in general, the mapping

min(kx, ky, 1) for k > 1 and x, y ∈ [0, 1] such that kx, ky ∈ [0, 1] does not define an overlap function (since by taking
x = y = 1

k we see that it does not fulfill condition (GS3)), min(x, y) is an overlap function, so we have the following
corollary. �

Corollary 9. The mapping min(x, y) is the strongest 1-Lipschitz overlap function, in the sense that for any other 1-Lipschitz
overlap function GS the inequality

GS(x, y) ≤ min(x, y)

holds for any x, y ∈ [0, 1].

For associative k-Lipschitz overlap functions we have the next result which can be derived from [24,25].

Theorem 13. If GS is an associative k-Lipschitz overlap function, then GS is a t-norm of the form given in Theorem 7, where each
involved strict t-norm T (see item (2) or item (3)) has a k-convex additive generator t, i.e.,

t(y+ kε)− t(y) ≤ t(x+ ε)− t(x)

for all 0 ≤ y ≤ x < 1 and ε ∈]0,min(1− x, (1− y)/k)[.

In Table 1 we present a summary of the properties fulfilled by some instances of t-norms.

6. Conclusions and future research

In this paper we have proposed the concept of overlap function, followed by a first mathematical study of the new
concept. In particular, we have studied the relationship with other well-known aggregation functions, as t-norms, copulas,
semicopulas and quasi-copulas. Moreover, keeping in mind potential applications, we have studied behavior under specific
properties like migrativity and homogeneity, which should be of interest for image processing, for instance.
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Table 1
Some functions and properties.

Expression t-norm TM t-norm TP Geometric mean

min(x, y) xy
√
xy

GS1 Yes Yes Yes
GS2 Yes Yes Yes
GS3 Yes Yes Yes
GS4 Yes Yes Yes
GS5 Yes Yes Yes
Migrativity No Yes Yes
Homogeneity of order 1 Yes No Yes
Homogeneity of order 2 No Yes No
Lipschitzianity Yes Yes No

Obviously, this paper can be continued in several ways, but some of them seem to us of immediate interest. On the one
hand, we can search for alternative characterizations for overlap functions, specifically designed to certain applications.
And on the other hand, we can explore additional properties that may hold in specific contexts. Anyway, the most relevant
project should be to acknowledge some keymodeling implications by extending the concept, from the present classification
framework into a more general knowledge management context. In this sense, and based upon the concept of overlap
function, we not only expect to develop useful tools to handle situations where the expert shows lack of information, but
we expect also to revise the management of complex concepts, which are quite often learnt and their details precised by
means of a sometimes long sequence of quite similar (i.e., overlapped) descriptions.
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